Ag-induced Phase Transition of Bi2 O3 Nanofibers for Enhanced Energy Conversion Efficiency towards Formate in CO2 Electroreduction

Chem Asian J. 2023 Jan 17;18(2):e202201165. doi: 10.1002/asia.202201165. Epub 2023 Jan 2.

Abstract

Bi-based electrocatalysts have been widely investigated in the CO2 reduction reaction (CO2 RR) for the formation of formate. However, it remains a challenge to achieve high Faradaic efficiency (FE) and industrial current densities at low overpotentials for obtaining both high formate productivity and energy efficiency (EE). Herein, we report an Ag-Bi2 O3 hybrid nanofiber (Ag-Bi2 O3 ) for highly efficient electrochemical reduction of CO2 to formate. Ag-Bi2 O3 exhibits a formate FE of >90% for current densities from -10 to -250 mA ⋅ cm-2 and attains a yield rate of 11.7 mmol ⋅ s-1 ⋅ m-2 at -250 mA ⋅ cm-2 . Moreover, Ag-Bi2 O3 increased the EE (52.7%) by nearly 10% compared to a Bi2 O3 only counterpart. Structural characterization and in-situ Raman results suggest that the presence of Ag induced the conversion of Bi2 O3 from a monoclinic phase (α-Bi2 O3 ) to a metastable tetragonal phase (β-Bi2 O3 ) and accelerated the formation of active metallic Bi at low overpotentials (at > -0.3 V), which together contributes to the highly efficient formate formation.

Keywords: Bi-based electrocatalysts; crystalline phase transition; electrochemical CO2 reduction; energy efficiency; formate.