Application of deep learning-based diagnostic systems in screening asymptomatic COVID-19 patients among oversea returnees

J Infect Dev Ctries. 2022 Nov 29;16(11):1706-1714. doi: 10.3855/jidc.15022.

Abstract

Introduction: Our study aimed to investigate the performance of deep learning (DL)-based diagnostic systems in alerting against COVID-19, especially among asymptomatic individuals coming from overseas, and to analyze the features of identified asymptomatic patients in detail.

Methodology: DL diagnostic systems were deployed to assist in the screening of COVID-19, including the pneumonia system and pulmonary nodules system. 1,917 overseas returnees who underwent CT examination and rRT-PCR tests were enrolled. DL pneumonia system promptly alerted clinicians to suspected COVID-19 after CT examinations while the performance was evaluated with rRT-PCR results as the reference. The radiological features of asymptomatic COVID-19 cases were described according to the Nomenclature of the Fleischner Society.

Results: Fifty-three cases were confirmed as COVID-19 patients by rRT-PCR tests, including 5 asymptomatic cases. DL pneumonia system correctly alerted 50 cases as suspected COVID-19 with a sensitivity of 0.9434 and specificity of 0.9592 (within 2 minutes per case); while the pulmonary nodules system alerted 2 of the 3 missed asymptomatic cases. Additionally, five asymptomatic patients presented different characteristics such as elevated creatine kinase level and prolonged prothrombin time, as well as atypical radiological features.

Conclusions: DL diagnostic systems are promising complementary approaches for prompt screening of imported COVID-19 patients, even the imported asymptomatic cases. Unique clinical and radiological characteristics of asymptomatic cases might be of great value in screening as well.

Advances in knowledge: DL-based systems are practical, efficient, and reliable to assist radiologists in screening COVID-19 patients. Differential features of asymptomatic patients might be useful to clinicians in the frontline to differentiate asymptomatic cases.

Keywords: COVID-19; Deep learning; asymptomatic cases; diagnostic systems; performance evaluation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / diagnosis
  • Deep Learning*
  • Humans
  • Radiologists
  • Research