Introduction: Natural language processing (NLP) is an area of computer science that involves the use of computers to understand human language and semantics (meaning) and to offer consistent and reliable responses. There is good evidence of significant advancement in the use of NLP technology in dealing with acutely ill patients in hospital (such as differential diagnosis assistance, clinical decision-making and treatment options). Further technical development and research into the use of NLP could enable further improvements in the quality of pre-hospital emergency care. The aim of this literature review was to explore the opportunities and potential obstacles in implementing NLP during this phase of emergency care and to question if NLP could contribute towards improving the process of nature of call screening (NoCS) to enable earlier recognition of life-threatening situations during telephone triage of emergency calls.
Methods: A systematic search strategy using two electronic databases (CINAHL and MEDLINE) was conducted in December 2021. The PRISMA systematic approach was used to conduct a review of the literature, and selected studies were identified and used to support a critical review of the actual and potential use of NLP for the call-taking phase of emergency care.
Results: An initial search offered 204 records: 23 remained after eliminating duplicates and a consideration of title and abstracts. A further 16 full-text articles were deemed ineligible (not related to the subject under investigation), leaving seven included studies. Following a thematic review of these studies two themes emerged, that are considered individually and together: (i) use of NLP for dealing with out-of-hospital cardiac arrest and (ii) responding to increased accuracy of NLP.
Conclusions: NLP has the potential to reduce or eliminate human bias during the emergency triage assessment process and contribute towards improving triage accuracy in pre-hospital decision-making and an early identification and categorisation of life-threatening conditions. Evidence to date is mostly linked to cardiac arrest identification; this review proposes that during the call-taking phase NLP should be extended to include further medical emergencies (including fracture/trauma, stroke and ketoacidosis). Further research is indicated to test the reliability of these findings and a proportionate introduction of NLP simultaneous with increased quality and reliability.
Keywords: cardiac arrest; emergency calls; natural language processing; triage.
© 2022 The Author(s).