Objective: Vascular smooth muscle cell phenotype switch (VSMCPS) plays a significant role in vascular remodeling. This study aimed to conduct a bibliometric analysis and visualize the knowledge map of research on VSMCPS. Methods: We retrieved publications focusing on VSMCPS from the Web of Science Core Collection database (SCI-EXPANDED) from 1999 to 2021. Using bibliometric tools, VOSviewer and CiteSpace, we identified the most productive researchers, journals, institutions, and countries. At the same time, the trends, hot topics, and knowledge networks were analyzed and visualized. Results: A total of 2213 publications were included in this analysis. The number of annual publications in the VSMCPS field exhibited an upward trend and could be roughly divided into three phases. Until 2006, the most prolific authors were from the United States. As of 2008, the number of articles published in China increased dramatically to reach 126 papers in 2020. As of 2014, China was the most productive country in this field. The United States ranked first in the number of highly-influential authors, institutions, and literature from 1999 to 2022. Owens GK, Hata, Akiko, and Wen, jin-kun were the most prolific authors. Arteriosclerosis Thrombosis and Vascular Biology, Circulation Research, and Cardiovascular Research were the top-ranked journals in this field. "Vascular remodeling," "atherosclerosis," "neointima," "hypertension", and "inflammation" were the main researched topics. New diseases, new mechanisms, and new phenotype (e.g., micro RNA, macrophage-like-cell, hypoxia, autophagy, long noncoding RNA, oxidative stress, endoplasmic reticulum stress, senescence, aging, abdominal aortic aneurysm, and aortic dissection) represent the trending topics in recent years. Conclusion: This study systematically analyzed and visualized the knowledge map of VSMCPS over the past 2 decades. Our findings provide a comprehensive overview for scholars who want to understand current trends and new research frontiers in this area.
Keywords: VOSviewer; bibliometric; citespace; phenotype switching; vascular smooth muscle cells.
Copyright © 2022 Han, Yan, Xia, Li, Zhang and jin.