Background: The bromodomain and extraterminal protein (BET) inhibitor trotabresib has demonstrated antitumor activity in patients with advanced solid tumors, including high-grade gliomas. CC-90010-GBM-001 (NCT04047303) is a phase I study investigating the pharmacokinetics, pharmacodynamics, and CNS penetration of trotabresib in patients with recurrent high-grade gliomas scheduled for salvage resection.
Methods: Patients received trotabresib 30 mg/day on days 1-4 before surgery, followed by maintenance trotabresib 45 mg/day 4 days on/24 days off after surgery. Primary endpoints were plasma pharmacokinetics and trotabresib concentrations in resected tissue. Secondary and exploratory endpoints included safety, pharmacodynamics, and antitumor activity.
Results: Twenty patients received preoperative trotabresib and underwent resection with no delays or cancelations of surgery; 16 patients received maintenance trotabresib after recovery from surgery. Trotabresib plasma pharmacokinetics were consistent with previous data. Mean trotabresib brain tumor tissue:plasma ratio was 0.84 (estimated unbound partition coefficient [KPUU] 0.37), and modulation of pharmacodynamic markers was observed in blood and brain tumor tissue. Trotabresib was well tolerated; the most frequent grade 3/4 treatment-related adverse event during maintenance treatment was thrombocytopenia (5/16 patients). Six-month progression-free survival was 12%. Two patients remain on treatment with stable disease at cycles 25 and 30.
Conclusions: Trotabresib penetrates the blood-brain-tumor barrier in patients with recurrent high-grade glioma and demonstrates target engagement in resected tumor tissue. Plasma pharmacokinetics, blood pharmacodynamics, and safety were comparable with previous results for trotabresib in patients with advanced solid tumors. Investigation of adjuvant trotabresib + temozolomide and concomitant trotabresib + temozolomide + radiotherapy in patients with newly diagnosed glioblastoma is ongoing (NCT04324840).
Keywords: blood–brain-tumor barrier; glioblastoma; pharmacodynamics; pharmacokinetics; trotabresib.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.