Altered neural processing and increased respiratory sensations have been reported in chronic obstructive pulmonary disease (COPD) as larger respiratory-related evoked potentials (RREPs), but the effect of healthy-aging has not been considered adequately. We tested RREPs evoked by brief airway occlusions in 10 participants with moderate-to-severe COPD, 11 age-matched controls (AMC) and 14 young controls (YC), with similar airway occlusion pressure stimuli across groups. Mean age was 76 years for COPD and AMC groups, and 30 years for the YC group. Occlusion intensity and unpleasantness was rated using the modified Borg scale, and anxiety rated using the Hospital Anxiety and Depression Scale. There was no difference in RREP peak amplitudes across groups, except for the N1 peak, which was significantly greater in the YC group than the COPD and AMC groups (p = 0.011). The latencies of P1, P2 and P3 occurred later in COPD versus YC (p < 0.05). P3 latency occurred later in AMC than YC (p = 0.024). COPD and AMC groups had similar Borg ratings for occlusion intensity (3.0 (0.5, 3.5) [Median (IQR)] and 3.0 (3.0, 3.0), respectively; p = 0.476) and occlusion unpleasantness (1.3 (0.1, 3.4) and 1.0 (0.75, 2.0), respectively; p = 0.702). The COPD group had a higher anxiety score than AMC group (p = 0.013). A higher N1 amplitude suggests the YC group had higher cognitive processing of respiratory inputs than the COPD and AMC groups. Both COPD and AMC groups showed delayed neural responses to the airway occlusion, which may indicate impaired processing of respiratory sensory inputs in COPD and healthy aging.
Keywords: EEG; dyspnea; respiratory sensation.
© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.