Impact of clogging on accumulation and stability of phosphorus in the subsurface flow constructed wetland

Chemosphere. 2023 Feb:313:137429. doi: 10.1016/j.chemosphere.2022.137429. Epub 2022 Nov 30.

Abstract

Substrate clogging is one of the major operation challenges of subsurface flow constructed wetlands (SSF-CWs). And the phosphorus (P) removal performance and stability of P accumulation of SSF-CWs would be varied with the development of substrate clogging. In this study, three horizontal SSF-CWs microcosms with different clogging degrees were conducted to explore the mechanism of P accumulation behavior influenced by substrate clogging. Increase in clogging degree resulted in hydraulic retention time (HRT) diminution and adsorption sites increase, which jointly led to reduced P removal efficiency at low clogging degree (L-CW), however, higher P removal efficiency was obtained as adsorption sites increase offset HRT diminution at high clogging degree (H-CW). Substrate adsorption was the primary removal pathway in all SSF-CW systems. It accounted for 77.86 ± 2.63% of the P input in the H-CW, significantly higher than the control (60.08 ± 4.79%). This was attributed to a higher proportion of Fe/Al-P accumulated on the substrate of H-CW, since clogging aggravated the anaerobic condition and promoted the generation of Fe ions. The increase in clogging degree also elevated the release risk of the accrued P in SSF-CWs, since Fe/Al-P was considered bioavailable and readily released under environmental disturbance. The obtained results provide new insights into the P transport and transformation in SSF-CWs and would be helpful to optimize substrate clogging management.

Keywords: Clogging; Flow characteristics; Phosphorus accumulation; Phosphorus stability; Subsurface flow constructed wetland.

MeSH terms

  • Phosphorus / metabolism
  • Waste Disposal, Fluid* / methods
  • Wetlands*

Substances

  • Phosphorus