Whole-genome identification of transposable elements reveals the equine repetitive element insertion polymorphism in Chinese horses

Anim Genet. 2023 Apr;54(2):144-154. doi: 10.1111/age.13277. Epub 2022 Dec 5.

Abstract

Transposable elements (TEs) are diverse, abundant, and complicated in genomes. They not only can drive the genome evolution process but can also act as special resources for adaptation. However, little is known about the evolutionary processes that shaped horses. In this work, 126 horse assemblages involved in most horse breeds in China were used to investigate the patterns of TE variation for the first time. By using RepeatMasker and melt software, we found that the horse-specific short interspersed repetitive elements family, equine repetitive elements (ERE1), exhibited polymorphisms in horse genomes. Phylogenetic analysis based on these ERE1 loci (minor allele frequency ≥0.05) revealed three major horse groups, namely, those in northern China, southern China, and Qinghai-Tibetan, which mirrors the result determined by SNPs to some extent. The present ERE1 family emerged ~0.26 to 1.77 Mya ago, with an activity peak at ~0.49 Mya, which matches the early stage of the horse lineage and decreases after the divergence of Equus caballus and Equus ferus przewalskii. To detect the functional ERE1(s) associated with adaptation, locus-specific branch length, genome-wide association study, and absolute allele frequency difference analyses were conducted and resulted in two common protein-coding genes annotated by candidate ERE1s. They were clustered into the vascular smooth muscle contraction (p = 0.01, EDNRA) and apelin signalling pathways (p = 0.02, NRF1). Notably, ERE1 insertion into the EDNRA gene showed a higher association with adaptation among southern China horses and other horses in 15 populations and 451 individuals (p = 4.55 e-8). Our results provide a comprehensive understanding of TE variations to analyse the phylogenetic relationships and traits relevant to adaptive evolution in horses.

Keywords: EDNRA; adaptation; equine repetitive elements; horse; transposable elements.

MeSH terms

  • Animals
  • DNA Transposable Elements*
  • Gene Frequency
  • Genome-Wide Association Study
  • Horses* / genetics
  • Phylogeny

Substances

  • DNA Transposable Elements