Background: Cell death and inflammation are the two important triggers of wear particle-induced osteolysis. Particles, including cobalt-chromium-molybdenum and tricalcium phosphate, have been reported to induce pyroptosis in macrophages and osteocytes. Although macrophage pyroptosis facilitates osteoclastic bone resorption and osteolysis, whether osteocyte pyroptosis is involved in osteoclastic osteolysis still needs further investigation. Desferrioxamine (DFO), an FDA-approved medication and a powerful iron chelator, has been proven to reduce ultrahigh-molecular-weight polyethylene (UHMWPE) particle-induced osteolysis. However, whether DFO can ameliorate UHMWPE particle-induced osteolysis by decreasing pyroptosis in osteocytes is unknown.
Results: A mouse calvarial osteolysis model and the mouse osteocyte cell line MLO-Y4 was used, and we found that pyroptosis in osteocytes was significantly induced by UHMWPE particles. Furthermore, our findings uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. In addition, we found that DFO could alleviate UHMWPE particle-induced pyroptosis in osteocytes in vivo and in vitro.
Conclusions: We uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. Furthermore, we found that DFO alleviated UHMWPE particle-induced osteoclastic osteolysis partly by inhibiting pyroptosis in osteocytes. Schematic of DFO reducing UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis. Wear particles, such as polymers, generated from prosthetic implant materials activate canonical inflammasomes and promote the cleavage and activation of caspase-1. This is followed by caspase-1-dependent IL-β maturation and GSDMD cleavage. The N-terminal fragment of GSDMD binds to phospholipids on the cell membrane and forms holes in the membrane, resulting in the release of mature IL-β and inflammatory intracellular contents. This further facilitates osteoclastic differentiation of BMMs, resulting in excessive bone resorption and ultimately leading to prosthetic osteolysis. DFO reduces UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis.
Keywords: Osteoclasts; Osteocytes; Osteolysis; Pyroptosis; Wear particles.
© 2022. The Author(s).