Feeding 10 billion people sustainably by 2050 in the era of slow genetic progress has spurred urgent calls to bring more crops per unit time. Over the last century, crop physiologists and breeders have been trying to alter plant biology to investigate and intervene in developmental processes under controlled chambers. Accelerating the breeding cycle via "speed breeding" was the outcome of these experiments. Speed breeding accelerates the genetic gain via phenome and genome-assisted trait introgression, re-domestication, and plant variety registration. Furthermore, early varietal release through speed breeding offers incremental benefits over conventional methods. However, a lack of resources and species-specific protocols encumber the technological implementation, which can be alleviated by reallocating funds to establish speed breeding units. This review discusses the limitations of conventional breeding methods and various alternative strategies to accelerate the breeding process. It also discusses the intervention at various developmental stages to reduce the generation time and global impacts of speed breeding protocols developed so far. Low-cost, field-based speed breeding protocol developed by Punjab Agricultural University, Ludhiana, Punjab, India to harvest at least three generations of wheat in a year without demanding the expensive greenhouses or growth chambers is also discussed.
Keywords: And economic assessment; Conventional breeding; Doubled haploid; Field-based speed breeding; In-vitro nursery; Rapid generation advancement.
© Prof. H.S. Srivastava Foundation for Science and Society 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.