Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium-Metal Batteries

ACS Appl Mater Interfaces. 2022 Dec 21;14(50):56110-56119. doi: 10.1021/acsami.2c17547. Epub 2022 Dec 9.

Abstract

With many reported attempts on fabricating single-ion conducting polymer electrolytes, they still suffer from low ionic conductivity, narrow voltage window, and high cost. Herein, we report an unprecedented approach on improving the cationic transport number (tLi+) of the polymer electrolyte, i.e., single-ion conducting polymeric protective interlayer (SIPPI), which is designed between the conventional polymer electrolyte (PVEC) and Li-metal electrode. Satisfied ionic conductivity (1 mS cm-1, 30 °C), high tLi+ (0.79), and wide-area voltage stability are realized by coupling the SIPPI with the PVEC electrolyte. Benefiting from this unique design, the Li symmetrical cell with the SIPPI shows stable cycling over 6000 h at 3 mA cm-2, and the full cell with the SIPPI exhibits stable cycling performance with a capacity retention of 86% over 1000 cycles at 1 C and 25 °C. This incorporated SIPPI on the Li anode presents an alternative strategy for enabling high-energy density, long cycling lifetime, and safe and cost-effective solid-state batteries.

Keywords: Li-metal batteries; polymer electrolyte; polymeric protective interlayer; single-ion conducting; solid-state battery.