Light-field cameras allow the acquisition of both the spatial and angular components of the light-field. The conventional way to perform such acquisitions leads to a strong spatio-angular resolution limitation but correlation-enabled plenoptic cameras have been introduced recently that relax this constraint. Here we use a computational version of this concept to acquire realistic light-fields images using a commercial DSLR Camera lens as an imaging system. By placing the image sensor in the focal plane of a lens, within the camera we ensure the acquisition of pure angular components together with the spatial information. We perform an acquisition presenting a high spatio-angular rays resolution obtained through a trade off of the temporal resolution. The acquisition reported is photo-realistic and the acquisition of diffraction limited features is observed with the setup. Finally, we demonstrate the refocusing abilities of the camera.
© 2022. The Author(s).