Polysaccharide of Atractylodes macrocephala Koidz Alleviates Cyclophosphamide-Induced Thymus Ferroptosis in Gosling

Animals (Basel). 2022 Dec 2;12(23):3394. doi: 10.3390/ani12233394.

Abstract

The present study aimed to explore the mechanism by which PAMK alleviates cyclophosphamide (CTX)-induced ferroptosis in thymocytes. One-day-old goslings were divided into four groups (10 goslings/group). The CON and CTX groups were fed a basic diet. The PAMK and CTX + PAMK groups were fed the basic diet mixed with PAMK (400 mg/kg). Moreover, the CTX and CTX + PAMK groups were given a daily injection of 40 mg/kg BW of CTX (at 19, 20, and 21 days of age). On the other hand, the CON and PAMK groups were given 0.5 mL of sterilized saline into the leg muscle (at 19, 20, and 21 days of age). The goslings were fed for 28 days. The ferroptosis pathway was enriched in transcriptome sequencing. Compared to the CON group, the thymus in the CTX group underwent injury, and the mitochondria of thymocytes showed features of ferroptosis. PAMK treatment alleviated ferroptosis in thymocytes and thymus injury, and CTX-induced elevated levels of oxidative stress and iron content restored GPX4 protein expression (p < 0.05) and inhibited the CTX-induced activation of the ferroptosis pathway (p < 0.05). Conclusively, PAMK could reduce thymus injury by alleviating CTX-induced thymocyte ferroptosis in gosling to alleviate the immunosuppression caused by CTX in the organism.

Keywords: cyclophosphamide; ferroptosis; gosling; immunosuppression; polysaccharide of Atractylodes macrocephala Koidz; thymus.