Objectives: To test reproducibility and predictive value of a simplified score for assessment of extraprostatic tumor extension (sEPE grade).
Methods: Sixty-five patients (mean age ± SD, 67 years ± 6.3) treated with radical prostatectomy for prostate cancer who underwent 1.5-Tesla multiparametric magnetic resonance imaging (mpMRI) 6 months before surgery were enrolled. sEPE grade was derived from mpMRI metrics: curvilinear contact length > 15 mm (CCL) and capsular bulging/irregularity. The diameter of the index lesion (dIL) was also measured. Evaluations were independently performed by seven radiologists, and inter-reader agreement was tested by weighted Cohen K coefficient. A nested (two levels) Monte Carlo cross-validation was used. The best cut-off value for dIL was selected by means of the Youden J index to classify values into a binary variable termed dIL*. Logistic regression models based on sEPE grade, dIL, and clinical scores were developed to predict pathologic EPE. Results on validation set were assessed by the main metrics of the receiver operating characteristics curve (ROC) and by decision curve analysis (DCA). Based on our findings, we defined and tested an alternative sEPE grade formulation.
Results: Pathologic EPE was found in 31/65 (48%) patients. Average κw was 0.65 (95% CI 0.51-0.79), 0.66 (95% CI 0.48-0.84), 0.67 (95% CI 0.50-0.84), and 0.43 (95% CI 0.22-0.63) for sEPE grading, CLL ≥ 15 mm, dIL*, and capsular bulging/irregularity, respectively. The highest diagnostic yield in predicting EPE was obtained by combining both sEPE grade and dIL*(ROC-AUC 0.81).
Conclusions: sEPE grade is reproducible and when combined with the dIL* accurately predicts extraprostatic tumor extension.
Key points: • Simple and reproducible mpMRI semi-quantitative scoring system for extraprostatic tumor extension. • sEPE grade accurately predicts extraprostatic tumor extension regardless of reader expertise. • Accurate pre-operative staging and risk stratification for optimized patient management.
Keywords: Diagnostic imaging; Multiparametric magnetic resonance imaging; Neoplasm grading; Prostatic neoplasms.
© 2022. The Author(s), under exclusive licence to European Society of Radiology.