Computation methods that predict the binding of peptides to MHC-I are important tools for screening and identifying immunogenic antigens and have the potential to accelerate vaccine and drug development. However, most available tools are sequence-based and optimized only for peptides containing the twenty canonical amino acids. This omits a large number of peptides containing non-canonical amino acids (NCAA), or residues that undergo varied post-translational modifications such as glycosylation or phosphorylation. These modifications fundamentally alter peptide immunogenicity. Similarly, existing structure-based methods are biased towards canonical peptide backbone structures, which may or may not be preserved when NCAAs are present. Rosetta FlexPepDock ab-initio is a structure-based computational protocol able to evaluate peptide-receptor interaction where no prior information of the peptide backbone is known. We benchmarked FlexPepDock ab-initio for docking canonical peptides to MHC-I, and illustrate for the first time the method's ability to accurately model MHC-I bound epitopes containing NCAAs. FlexPepDock ab-initio protocol was able to recapitulate near-native structures (≤1.5Å) in the top lowest-energy models for 20 out of 25 cases in our initial benchmark. Using known experimental binding affinities of twenty peptides derived from an influenza-derived peptide, we showed that FlexPepDock protocol is able to predict relative binding affinity as Rosetta energies correlate well with experimental values (r = 0.59, p = 0.006). ROC analysis revealed 80% true positive and a 40% false positive rate, with a prediction power of 93%. Finally, we demonstrate the protocol's ability to accurately recapitulate HLA-A*02:01 bound phosphopeptide backbone structures and relative binding affinity changes, the theoretical structure of the lymphocytic choriomeningitis derived glycosylated peptide GP392 bound to MHC-I H-2Db, and isolevuglandin-adducted peptides. The ability to use non-canonical amino acids in the Rosetta FlexPepDock protocol may provide useful insight into critical amino acid positions where the post-translational modification modulates immunologic responses.
Copyright: © 2022 Bloodworth et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.