Background: Continuous invasive monitoring of intracranial pressure (ICP) is essential in neurocritical care for surveillance and management of raised ICP. Fluid-based systems and strain gauge microsensors remain the current standard. In the past few decades, several studies with wireless monitoring were developed aiming to reduce invasiveness and complications.
Objective: To describe a novel Wi-Fi fiber-optic device for continuous ICP monitoring using smartphone in a swine model.
Methods: Two ICP sensors (wireless prototype and wire-based reference) were implanted in the cerebral parenchyma of a swine model for a total of 120 minutes of continuous monitoring. Every 5 minutes, jugular veins compression was performed to evaluate ICP changes. The experimentation was divided in 3 phases for comparison and analysis.
Results: Phase 1 showed agreement in ICP changes for both sensors during jugular compression and releasing, with a positive and strong Spearman correlation (r = 0.829, P < .001). Phase 2 started after inversion of the sensors in the burr holes; there was a positive and moderately weak Spearman correlation (r = 0.262, P < .001). For phase 3, the sensors were returned to the first burr holes; the prototype behaved similarly to the reference sensor, presenting a positive and moderately strong Spearman correlation (r = 0.669, P < .001).
Conclusion: A Wi-Fi ICP monitoring system was demonstrated in a comprehensive and feasible way. It was possible to observe, using smartphone, an adequate correlation regarding ICP variations. Further adaptations are already being developed.
Copyright © Congress of Neurological Surgeons 2022. All rights reserved.