Clustering of single-cell multi-omics data with a multimodal deep learning method

Nat Commun. 2022 Dec 13;13(1):7705. doi: 10.1038/s41467-022-35031-9.

Abstract

Single-cell multimodal sequencing technologies are developed to simultaneously profile different modalities of data in the same cell. It provides a unique opportunity to jointly analyze multimodal data at the single-cell level for the identification of distinct cell types. A correct clustering result is essential for the downstream complex biological functional studies. However, combining different data sources for clustering analysis of single-cell multimodal data remains a statistical and computational challenge. Here, we develop a novel multimodal deep learning method, scMDC, for single-cell multi-omics data clustering analysis. scMDC is an end-to-end deep model that explicitly characterizes different data sources and jointly learns latent features of deep embedding for clustering analysis. Extensive simulation and real-data experiments reveal that scMDC outperforms existing single-cell single-modal and multimodal clustering methods on different single-cell multimodal datasets. The linear scalability of running time makes scMDC a promising method for analyzing large multimodal datasets.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cluster Analysis
  • Computer Simulation
  • Deep Learning*
  • Multiomics
  • Single-Cell Analysis