The anterior insula (AI) has the central role in coordinating attention and integrating information from multiple sensory modalities. AI dysfunction may contribute to both sensory and social impairments in autism spectrum disorder (ASD). Little is known regarding the brain mechanisms that guide multisensory integration, and how such neural activity might be affected by autistic-like symptoms in the general population. In this study, 72 healthy young adults performed an audiovisual speech synchrony judgment (SJ) task during fMRI scanning. We aimed to investigate the SJ-related brain activations and connectivity, with a focus on the AI. Compared with synchronous speech, asynchrony perception triggered stronger activations in the bilateral AI, and other frontal-cingulate-parietal regions. In contrast, synchronous perception resulted in greater involvement of the primary auditory and visual areas, indicating multisensory validation and fusion. Moreover, the AI demonstrated a stronger connection with the anterior cingulate gyrus (ACC) in the audiovisual asynchronous (vs. synchronous) condition. To facilitate asynchrony detection, the AI may integrate auditory and visual speech stimuli, and generate a control signal to the ACC that further supports conflict-resolving and response selection. Correlation analysis, however, suggested that audiovisual synchrony perception and its related AI activation and connectivity did not significantly vary with different levels of autistic traits. These findings provide novel evidence for the neural mechanisms underlying multisensory temporal processing in healthy people. Future research should examine whether such findings would be extended to ASD patients.
Keywords: anterior insula; audiovisual speech; autistic traits; synchrony perception.
© 2022 Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.