Network-Based Elaboration of the Efficacy of the Dachangshu (BL25) and Tianshu (ST25) Points in the Treatment of Functional Constipation in Children through Inflammation, Adipocytokine, or Leptin Pathways

Evid Based Complement Alternat Med. 2022 Dec 6:2022:5315927. doi: 10.1155/2022/5315927. eCollection 2022.

Abstract

Constipation commonly occurs during childhood, and more than 95% of cases are classified as functional constipation. If not effectively treated, 20% of patients with childhood constipation can continue to exhibit symptoms into adulthood, which seriously affects their mental health and quality of life. The main feature of acupuncture or acupoint stimulation, a special branch of traditional Chinese medicine, is the selection of different acupoints for different diseases, and many worthy guidelines have been established for matching acupoints. The back-shu and front-mu point combination adheres to an important acupoint compatibility law that has been used since its proposal 2,500 years ago but has not yet been verified by the modern evidence-based experiments. This study focused on the back-shu and front-mu point combination using the Dachangshu (BL25) and Tianshu (ST25) points as examples to explore possible research methods for network acupoint-based stimulation based on existing evidence and to elucidate the mechanisms induced by BL25 and ST25 in the treatment of functional constipation in children (FCC). The study found that BL25 and ST25 have 20 common targets, namely, AQP8, DRD2, VIP, TAC1, IL6R, TNF, FOS, KIT, CHAT, HTR3A, GAS8, SOD3, TRPV1, MPO, CALCA, IL1B, P2RX7, NPY2R, IL10RA, and TPH1, and these targets may provide a strategy for the combined usage of BL25 and ST25. In addition, BL25 and ST25 can affect FCC treatment through inflammation-relatedTh17-cell differentiation, the NF-kappa B signaling pathway, and the Toll-like receptor signaling pathway. Adipocytokines or leptin may also comprise the mechanism through which BL25 and ST25 regulate FCC. In addition, BL25 and ST25 regulate FCC through 13 core targets, namely, NFKBIA, RELA, TNF, IKBKB, IRAK1, TLR4, MYD88, TNFRSF1A, IL1R1, TLR2, IL1B, TRAF6, and TNFRSF1B. In short, this study provides new ideas and methods for studying the mechanism of acupuncture points.

Publication types

  • Retracted Publication