The innervation of the biceps muscle was examined in regenerated and vitamin A-induced serially duplicated axolotl forelimbs using retrograde transport of horseradish peroxidase. The regenerated biceps muscle becomes innervated by motor neurones in the same position in the spinal cord as the normal biceps motor pool. In previous experiments in which the innervation of a second copy of a proximal limb muscle was examined in serially duplicated limbs (Stephens, Holder & Maden, 1985), the duplicate muscle was found to become innervated by motor neurones that would normally have innervated distal muscles. In the present study, the innervation of the second copy of biceps was examined under conditions designed to encourage nerve sprouting from 'correct' biceps axons. Following either partial limb denervation or denervation coupled with removal of the proximal biceps, the second copy of the muscle was still innervated by inappropriate motor neurones, which again would normally innervate distal limb muscles. These results are interpreted as evidence for the necessity for an appropriate local environment for axonal growth to allow reformation of a correct pattern of motor innervation in the regenerated limb.