Purpose: To investigate the costs, quality of life, and user experiences associated with upper limb prosthesis use, and to evaluate the cost-effectiveness of multi-grip compared to standard myoelectric hand prostheses (MHPs/SHPs).
Materials and methods: The EQ-5D-5L to assess the quality of life, the patient-reported outcome measure to assess the preferred usage features of upper limb prosthesis (PUF-ULP), and a cost questionnaire (societal perspective) were completed by 242 prosthesis users (57% men; mean age = 58 years). Incremental cost-utility and cost-effectiveness ratios (ICUR/ICER) with respectively the EQ-5D-5L and PUF-ULP were calculated to compare MHPs with SHPs. Statistical uncertainty was estimated using bootstrapping. Netherlands Trial Registry number: NL7682.
Results: The mean yearly total costs related to prosthesis use of MHPs (€54 112) and SHPs (€23 501) were higher compared to prostheses with tools/accessories (€11 977), body-powered (€11 298), and cosmetic/passive prostheses (€10 132). EQ-5D-5L and PUF-ULP scores did not differ between prosthesis types. ICUR was €-728 833 per quality-adjusted life year; ICER was €-187 798 per PUF-ULP point gained.
Conclusions: Myoelectric prostheses, especially MHPs, were most expensive compared to other prostheses, while no differences in quality of life and user experiences were apparent. MHPs were not cost-effective compared to SHPs. When prescribing MHPs, careful consideration of advantages over SHPs is recommended.
Keywords: Upper extremity; amputation; artificial limbs; costs and cost analysis; patient reported outcome measures; prostheses; quality of life; questionnaire.
Myoelectric upper limb prostheses, especially the multi-grip hands, were more expensive than all other types of upper limb prostheses.Health-related quality of life and user experiences were comparable in users of different types of upper limb prostheses.Acquisition costs mainly explained the differences in costs related to upper limb prosthesis use.Prescription of multi-grip hand prostheses should be considered carefully, since these are not cost-effective compared to standard myoelectric hand prostheses.