In the current era of the anthropocene, climate change is one of the main determinants of species redistribution and biodiversity loss. Worryingly, the situation is alarming for endemic and medicinally important plant species with a narrow distributional range. Therefore, it is pivotal to inspect the influence of accelerated climate change on medicinally important threatened and endemic plant species. Using an ensemble approach, the current study aims at modelling the present distribution and predicting the future potential distribution coupled with the threat assessment of Swertia petiolata-a medicinally important endemic plant species in the Himalayan biodiversity hotspot. Our study revealed that under current climatic scenarios, the suitable habitats for the species occur across the western Himalayan region which includes the north-western Indian states (Jammu and Kashmir, Himachal Pradesh, and southern Uttarakhand), northern Pakistan, and north-western Nepal. Also, temperature seasonality (BIO4) and precipitation seasonality (BIO15) are the most significant bioclimatic variables determining the distribution of S. petiolata. Furthermore, the study projected a reduction in the suitable habitats for the species under future changing climatic scenarios with a reduction ranging from - 40.298% under RCP4.5 2050 to - 83.421% under RCP8.5 2070. Most of the habitat reduction will occur in the western Himalayan region. In contrast, some of the currently unsuitable Himalayan regions like northern Uttarakhand will show increasing suitability under climate change scenarios. The current study also revealed that S. petiolata is classified as Near Threatened (NT) following the IUCN criterion B. Hopefully, the present study will provide a robust tool for predicting the cultivation hotspots and devising scientifically effective conservation strategies for this medicinally important plant species in the Himalaya and similar environments elsewhere in the world.
Keywords: Climate change; Conservation; Distribution; Habitat suitability; Himalaya; Swertia petiolata.
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.