Purpose: Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which not only affects patients' life quality, but also places a great burden on the public health system. Recently, ginsenoside Rg1 has been found to act in IDD; however, the mechanism is still unclear. The purpose of this study is to explore the function of ginsenoside Rg1 and its molecular mechanism in IDD.
Methods: The rat model of IDD and nucleus pulposus (NP) experimental groups treated with ginsenoside Rg1 was constructed for investing the role of ginsenoside Rg1 in IDD rats. In the in vitro and in vivo study, the histological morphological changes, motor threshold (MT), inflammatory factors, oxidative stress, apoptosis and expression of the YAP1/TAZ signaling pathway-related proteins of the intervertebral discs (IVD) were measured by histological staining, mechanical and thermal stimulation, ELISA, qRT-PCR, flow cytometry, and western blot, respectively.
Results: Ginsenoside Rg1 significantly increased the threshold for mechanical and thermal stimulation and alleviated histological changes in IDD rats. Ginsenoside Rg1 had a significant inhibitory effect on the secretion level of inflammatory factors, redox activity, extracellular matrix (ECM) degradation in IVD tissue and NP cells, and apoptosis in NP cells. Further investigation revealed that ginsenoside Rg1 significantly inhibited the expression of YAP1/TAZ signaling pathway-related proteins. Additionally, the above inhibitory effect of ginsenoside Rg1 on IDD progression was concentration-dependent, that is, the highest concentration of ginsenoside Rg1 was most effective.
Conclusion: Ginsenoside Rg1 inhibits IDD progression by suppressing the activation of YAP1/TAZ signaling pathway. This means that ginsenoside Rg1 has the potential to treat IDD.
Keywords: Ginsenoside Rg1; Intervertebral disc degeneration; Nucleus pulposus cells; YAP1/TAZ signaling pathway.
© 2022. The Author(s).