One-Pot Tandem Transformation of Inulin as Fructose-Rich Platform Towards 5-Hydroxymethylfurfural: Feedstock Advantages, Acid-Site Regulation and Solvent Effects

ChemSusChem. 2023 Mar 22;16(6):e202201936. doi: 10.1002/cssc.202201936. Epub 2023 Feb 3.

Abstract

The valorization of non-grain biomass feedstocks to value-added chemicals, polymers and alternative fuels is a crucial route for the utilization of renewable resources. Inulin belongs to a type of fructans, which is a pivotal platform bridging upstream fructose-rich biomass feedstocks typically represented by Jerusalem artichoke and downstream platform molecules such as alcohols, aldehydes and acids. Fructose can be directly obtained from the inulin hydrolysis and further converted into various platform chemicals, which is a more environmentally economical route than the conventional catalytic upgrading of cellulose. Nevertheless, most perspectives over the last decade have focused on the valorization of cellulose-derived carbohydrates, without much emphasis on the practical importance of one-pot transformation of inulin. In this review, we aim to demonstrate an efficient one-pot tandem transformation system of the inulin as fructose-rich platform towards 5-hydroxymethylfurfural (HMF). Core concerns are placed on elucidating the contributing roles of acid sites and solvents in enhancing the overall catalytic performance. The perspectives presented in this review may contribute to the innovation in the catalytic refining of fructose-rich non-grain biomass and the development of a greener biomass-based energy system.

Keywords: 5-hydroxymethylfurfural; acid catalysis; biomass valorization; inulin; solvent effects.

Publication types

  • Review