In this study, we investigated the presence, abundance, and chemical nature of microplastics (MPs) in the freshwater fish gastrointestinal tract in the South of Italy, and evaluated the possible correlation between MPs and environmental pollutants. Fifty specimens belonging to five species (Scardinius erythrophthalmus, Barbus barbus, Rutilus rubilio, Leuciscus cephalus, Salmo trutta), from twenty sites were collected. MPs chemical feature was identified by means of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) and Raman microscopy. MPs were represented by 34.86 % fragments, film, and foam (all together MPs) and 65.14 % by fibers (MFs). The mean number of MPs/MFs per fish ranged from 6.25 ± 4.35 in R. rubilio and 2.26 ± 1.94 in B. barbus. The highest number of MPs/MFs per g of GIT was found in R. rubilio (9.07 ± 9.66), and the lowest in S. erythrophthalmus (0.75 ± 0.53). The highest number of MPs/MFs per fish species was found in L. cephalus (16), and the lowest in S. erythrophthalmus (4). Black predominated in every type of plastic debris identified, followed by blue and white, respectively for MFs and MPs. Polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP), were the main plastic polymers found. At fish sampling sites, comparing concentrations in soils of potentially toxic elements and persistent organic pollutants with the number of MPs/MFs in fish, a significant correlation was noted with polychlorinated biphenyls (PCBs) and, in particular, with PCB 105, PCB 118, PCB 156, PCB 157, and PCB 167. A strong correlation was also observed with all types of polycyclic aromatic hydrocarbon (PAHs) particularly with benzo(ghi)perylene, dibenz(a,h)anthracene, benzo(b)fluoranthene, benz(a)anthracene, benzo(a)pyrene, and pyrene. The results of this study would be useful to draft management and action plans, promote intervention plans aiming at removing threats to species and habitats, and address ways of renaturalization.
Keywords: Environmental pollutants; Fish; Freshwater; Microfibers; Microplastics.
Copyright © 2022 Elsevier B.V. All rights reserved.