Enhancing Molecular Testing for Effective Delivery of Actionable Gene Diagnostics

Bioengineering (Basel). 2022 Dec 1;9(12):745. doi: 10.3390/bioengineering9120745.

Abstract

There is a deep need to navigate within our genomic data to find, understand and pave the way for disease-specific treatments, as the clinical diagnostic journey provides only limited guidance. The human genome is enclosed in every nucleated cell, and yet at the single-cell resolution many unanswered questions remain, as most of the sequencing techniques use a bulk approach. Therefore, heterogeneity, mosaicism and many complex structural variants remain partially uncovered. As a conceptual approach, nanopore-based sequencing holds the promise of being a single-molecule-based, long-read and high-resolution technique, with the ability of uncovering the nucleic acid sequence and methylation almost in real time. A key limiting factor of current clinical genetics is the deciphering of key disease-causing genomic sequences. As the technological revolution is expanding regarding genetic data, the interpretation of genotype-phenotype correlations should be made with fine caution, as more and more evidence points toward the presence of more than one pathogenic variant acting together as a result of intergenic interplay in the background of a certain phenotype observed in a patient. This is in conjunction with the observation that many inheritable disorders manifest in a phenotypic spectrum, even in an intra-familial way. In the present review, we summarized the relevant data on nanopore sequencing regarding clinical genomics as well as highlighted the importance and content of pre-test and post-test genetic counselling, yielding a complex approach to phenotype-driven molecular diagnosis. This should significantly lower the time-to-right diagnosis as well lower the time required to complete a currently incomplete genotype-phenotype axis, which will boost the chance of establishing a new actionable diagnosis followed by therapeutical approach.

Keywords: actionable genetic diagnosis; complex structural variants; genetic counselling; long-read sequencing; nanopore sequencing; single cells.

Publication types

  • Review