Synthesis of Carrier-Free Paclitaxel-Curcumin Nanoparticles: The Role of Curcuminoids

Bioengineering (Basel). 2022 Dec 18;9(12):815. doi: 10.3390/bioengineering9120815.

Abstract

The systemic administration of paclitaxel (PTX)-based combinatorial therapies is significantly restricted due to the multidrug resistance. Curcumin (CUR) not only inhibits cancer-cell proliferation but also reverses the PTX resistance. However, achieving codelivery of these two drugs is a challenge due to their poor water solubility. Herein, we synthesized carrier-free PTX NPs by a facile nanoprecipitation method with the help of CUR and other curcuminoids present in turmeric extract. The prepared NPs demonstrated spherical morphologies with high conformational stability. Experimental studies showed that the presence of both bisdemethoxycurcumin and demethoxycurcumin is essential for the successful formation of spherical and monodisperse NPs. Computational studies revealed that the presence of the more sterically available curcuminoids BMC and DMC makes the self-assembly procedure more adaptable with a higher number of potential conformations that could give rise to more monodisperse PTX-CUR NPs. Compared with PTX alone, PTX-CUR NPs have shown comparable therapeutic efficiency in vitro and demonstrated a higher cellular internalization, highlighting their potential for in vivo applications. The successful formation of PTX-CUR NPs and the understanding of how multiple drugs behave at the molecular level also provide guidance for developing formulations for the synthesis of high-quality and effective carrier-free nanosystems for biomedical applications.

Keywords: carrier-free nanoparticles; curcumin; hydrophobic anticancer drugs; molecular modeling; paclitaxel; self-assembly.