A direct assessment of the methane (CH4) emission level and its variability factors is needed in each animal species in order to target the best mitigation strategy for the livestock sector. Therefore, the present study aimed to (1) test a laser methane detector (LMD) for the first time in Italian Mediterranean buffaloes (IMB), a non-invasive tool to quantify CH4 emissions; (2) test the effect of season on the emissions; and (3) compare the results measured directly with the ones estimated with the existing equations. CH4 emissions of twenty non-productive IMB, under the same feeding regimen, were monitored for 12 days in summer and winter. Significantly higher THI (74.46 ± 1.88 vs. 49.62 ± 4.87; p < 0.001), lower DMI (2.24 ± 0.04 vs. 2.51 ± 0.03% DMI/kg live weight; p < 0.001) and lower emission intensities (0.61 ± 0.15 vs. 0.75 ± 0.13; p < 0.001) were found during the summer period when compared with winter. LMD was found to be a versatile tool to be used in buffaloes, and it was clear that a summer increase in THI could act as a stressor for the animals, influencing their emissions. In addition, measured emissions were significantly higher than when estimated with the existing equations (p < 0.001), suggesting the need for further research in this area.
Keywords: buffaloes; greenhouse gas emissions; heat stress; methane; non-invasive tool; sustainability.