Background: The "Syphilis No!" campaign the Brazilian Ministry of Health (MoH) launched between November 2018 and March 2019, brought forward the concept "Test, Treat and Cure" to remind the population of the importance of syphilis prevention. In this context, this study aims to analyze the similarity of syphilis online news to comprehend how public health communication interventions influence media coverage of the syphilis issue.
Methods: This paper presented a computational approach to assess the effectiveness of communication actions on a public health problem. Data were collected between January 2015 and December 2019 and processed using the Hermes ecosystem, which utilizes text mining and machine learning algorithms to cluster similar content.
Results: Hermes identified 1049 google-indexed web pages containing the term 'syphilis' in Brazil. Of these, 619 were categorized as news stories. In total, 157 were grouped into clusters of at least two similar news items and a single cluster with 462 news classified as "single" for not featuring similar news items. From these, 19 clusters were identified in the pre-campaign period, 23 during the campaign, and 115 in the post-campaign.
Conclusions: The findings presented in this study show that the volume of syphilis-related news reports has increased in recent years and gained popularity after the SNP started, having been boosted during the campaign and escalating even after its completion.
Keywords: communicable disease; data mining; health policy; public health; syphilis; text extraction.