Background: Anlotinib is a highly potent multi-target tyrosine kinase inhibitor. Accumulating evidence suggests that anlotinib exhibits effective anti-tumor activity against various cancer subtypes. However, the effects of anlotinib against cisplatin-resistant (CIS) ovarian cancer (OC) are yet to be elucidated. The objective of this study was to investigate the inhibitory effect of anlotinib on the pathogenesis of cisplatin-resistant OC. Materials and Methods: Human OC cell lines (A2780 and A2780 CIS) were cultured and treated with or without anlotinib. The effects of anlotinib on cell proliferation were determined using cell-counting kit-8 and colony-formation assays. To evaluate the invasion and metastasis of OC cells, we performed wound-healing and transwell assays. The cell cycle was analyzed via flow cytometry. A xenograft mouse model was used to conduct in vivo studies to verify the effects of anlotinib. The expression of Ki-67 in the tumor tissue was detected via immunohistochemistry. Quantitative real-time polymerase chain reaction and Western blotting were used to measure the mRNA and protein levels. Results: Our study revealed that anlotinib significantly inhibited the proliferation, migration, and invasion of A2780 and A2780 CIS in a dose-dependent way in vitro (p < 0.05). Through R software ‘limma’ package analysis of GSE15372, it was found that, in comparison with A2780, PLK2 was expressed in significantly low levels in the corresponding cisplatin-resistant strains. The ERK1/2/Plk2 signaling axis mediates the inhibitory effect of anlotinib on the proliferation and migration of ovarian cancer cell lines. Moreover, our research found that anlotinib effectively inhibited the growth of tumor cells in an OC xenograft mouse model. Conclusions: In this study, anlotinib showed excellent inhibitory effects against cisplatin-resistant OC both in vitro and in vivo. These results add to the growing body of evidence supporting anlotinib as a potential anticancer agent against OC.
Keywords: anlotinib; cisplatin-resistant; ovarian cancer.