Inflow obstruction in left ventricular assist devices (LVAD) may lead to embolic stroke and pump malfunction. We investigated if an accelerometer detected graded LVAD inflow obstructions. Detection performances were compared to the current continuous surveillance routine based on the pump power consumption (PLVAD). In ten mock circuit experiments, four different-sized pendulating balloons obstructed HVAD™ inflow conduits cross-section areas by 14%-75%. Nonharmonic amplitudes (NHA) of continuous signals from a triaxial accelerometer attached to the LVAD were compared against single-point PLVAD values, using load and speed alterations as control interventions. We analyzed the NHA band power with a pairwise nonparametric statistical test. The detection performances were analyzed by receiver operating characteristics with areas under the curves (AUC). The NHA remained unaffected during load alterations. In contrast, NHA increased significantly from the 27% obstruction level (AUC≥0.82), an effect amplified by increased pump speed. PLVAD did not change significantly below the maximal 75% obstruction level (AUC≤0.36). In conclusion, NHA detected the inflow obstructions much better than PLVAD. The technique may provide a future monitoring modality of any pendulating obstructive inflow pathology.
Keywords: Accelerometer; Detection; Inflow obstructions; LVAD; Pump vibrations.
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.