A total of 240 healthy 1-day-old Ross 308 male broilers were randomly divided into 3 groups (CS0 group, CS3 group, and CS6 group), with 5 replicates in each group and 16 broilers in each replicate, in order to evaluate the effects of intermittent mild cold stimulation (IMCS) on the intestinal immune function and anti-cold stress ability of broilers after acute cold stress. The mRNA expression levels of cytokines and Toll-like receptors (TLRs) in the duodenum and jejunum were detected at the end of cold stimulation (36 d), 2 wk after recovery (50 d), and after acute cold stress (Y6). In addition, the mRNA and protein expression levels of heat shock proteins (HSPs) were measured before and after acute cold stress. The experimental data were statistically processed using 1-way ANOVA and Duncan's multiple comparisons. The results showed that the mRNA expression levels of IL2, IL8, IFN γ, TLR7, and TLR21 in the duodenum and IL2 and IFN γ in jejunum were significantly higher in the CS6 group than in the CS0 and CS3 groups at 36 d (P < 0.05). All TLR levels in the jejunum were significantly lower in the CS3 group than in the CS0 and CS6 groups at 36 d (P < 0.05). After 6 h of acute cold stress, in the duodenum, the mRNA expression levels of IL6 and IL8 were significantly decreased in the CS0 and CS6 groups compared to levels at 50 d (P < 0.05), while levels in the CS3 group remained stable (P > 0.05). Compared with 50 d, the expression level of HSP mRNA in the jejunum in the CS3 group was relatively stable compared to that in the CS0 and CS6 groups after acute cold stress (P > 0.05). At the protein level, the HSP60 expression level in the duodenum and HSP40, HSP60, and HSP70 expression levels in the jejunum were significantly higher in the CS3 group than in the CS0 and CS6 groups after acute cold stress (P < 0.05). In conclusion, cold stimulation training at 3℃/3 h lower than the conventional feeding temperature can improve the intestinal immune function and anti-stress ability of broilers.
Keywords: broiler; cold adaptation; immune regulation; intermittent mild cold stimulation; small intestine.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.