(1) Background: In spite of the undeniable clinical value of the index of microvascular resistance (IMR) in assessing the status of coronary microcirculation, its use globally remains very low. The aim of this study was to validate the novel single-view, pressure-wire- and adenosine-free angiographic microvascular resistance (AMR) index, having the invasive wire-based IMR as a reference standard. (2) Methods: one hundred and sixty-three patients (257 vessels) were investigated with pressure wire-based IMR. Microvascular dysfunction (CMD) was defined by IMR ≥ 25. AMR was independently computed from the diagnostic coronary angiography in a blinded fashion. (3) Results: AMR demonstrated a good correlation (r = 0.83, p < 0.001) and diagnostic performance (AUC 0.94; 95% CI: 0.91 to 0.97) compared with wire-based IMR. The best cutoff value for AMR in determining IMR ≥ 25 was 2.5 mmHg*s/cm. The overall diagnostic accuracy of AMR was 87.2% (95% CI: 83.0% to 91.3%), with a sensitivity of 93.5% (95% CI: 87.0% to 97.3%), a specificity of 82.7% (95% CI: 75.6% to 88.4%), a positive predictive value of 79.4% (95% CI: 71.2% to 86.1%) and a negative predictive value of 94.7% (95% CI: 89.3% to 97.8%). No difference in terms of CMD rate was described among different clinical presentations. (4) Conclusions: AMR derived solely from a single angiographic view is a feasible computational alternative to pressure wire-based IMR, with good diagnostic accuracy in assessing CMD.
Keywords: angiography-derived physiology; coronary physiology; coronary pressure and flow; functional coronary angiography; ischemia with non-obstructed coronary artery disease; microvascular dysfunction; myocardial microcirculation; personalized invasive therapy in coronary artery disease.