The construction of efficient and stable electrocatalysts is of widespread research significance for electrocatalytic coupling reactions. Herein, an amorphous Rh metallene sulfide with sulfur-rich vacancies (a-RhS2-x metallene) is synthesized for the cathodic nitrobenzene (Ph-NO2) electroreduction reaction (ERR) to aniline (Ph-NH2) coupled with the anodic sulfur ion (S2-) oxidation reaction (SOR) in a coelectrolysis system. On the one hand, the amorphous Rh metallene structure can provide enough of a reactive site. On the other hand, the amorphization and the introduced S vacancies can generate rich defects and ligand unsaturated sites to improve the intrinsic activity of the active sites. Due to these advantages, the a-RhS2-x metallene exhibits superior electrocatalytic performance for Ph-NO2 ERR and SOR. Inspiringly, in the assembled electrocatalytic coupling system, the required overpotential is only 0.442 V at 10 mA cm-2 to drive the cathodic Ph-NO2 ERR and anodic SOR, which allows for promising energy-efficient electrolysis to generate high value-added chemicals.
Keywords: S vacancies; a-RhS2−x metallene; amorphization; nitrobenzene electroreduction reaction; sulfur ion oxidation reaction.