A comprehensive assessment of leachate contamination at a non-operational open dumpsite: mycoflora screening, metal soil pollution indices, and ecotoxicological risks

Environ Monit Assess. 2022 Dec 28;195(1):243. doi: 10.1007/s10661-022-10885-0.

Abstract

The final disposal of municipal solid waste (MSW) in dumpsites is still a reality worldwide, especially in low- and middle-income countries, leading to leachate-contaminated zones. Therefore, the aim of this study was to carry out soil and leachate physicochemical, microbiological, and toxicological characterizations from a non-operational dumpsite. The L-01 pond samples presented the highest physicochemical parameters, especially chloride (Cl; 4101 ± 44.8 mg L-1), electrical conductivity (EC; 10,452 ± 0.1 mS cm-1), and chemical oxygen demand (COD; 760 ± 6.6 mg L-1) indicating the presence of leachate, explained by its close proximity to the landfill cell. Pond L-03 presented higher parameters compared to pond L-02, except for N-ammoniacal and phosphorus levels, explained by the local geological configuration, configured as a slope from the landfill cell towards L-03. Seven filamentous and/or yeast fungi genera were identified, including the opportunistic pathogenic fungi Candida krusei (4 CFU) in an outcrop sample. Regarding soil samples, Br, Se, and I were present at high concentrations leading to high soil contamination (CF ≤ 6). Pond L-02 presented the highest CF for Br (18.14 ± 18.41 mg kg-1) and I (10.63 ± 3.66 mg kg-1), while pond L-03 presented the highest CF for Se (7.60 ± 1.33 mg kg-1). The most severe lethal effect for Artemia salina was observed for L-03 samples (LC50: 79.91%), while only samples from L-01 were toxic to Danio rerio (LC50: 32.99%). The highest lethality for Eisenia andrei was observed for L-02 samples (LC50: 50.30%). The applied risk characterization indicates high risk of all proposed scenarios for both aquatic (RQ 375-909) and terrestrial environments (RQ > 1.4 × 105). These findings indicate that the investigated dumpsite is contaminated by both leachate and metals, high risks to living organisms and adjacent water resources, also potentially affecting human health.

Keywords: Ecotoxicity; Fungi; Geo-accumulation; Landfill leachate; Solid waste.

MeSH terms

  • Environmental Monitoring
  • Humans
  • Metals
  • Refuse Disposal*
  • Soil
  • Solid Waste / analysis
  • Waste Disposal Facilities
  • Water Pollutants, Chemical* / analysis

Substances

  • Water Pollutants, Chemical
  • Solid Waste
  • Metals
  • Soil