Linc-ROR drive adriamycin resistance by targeting AP-2α/Wnt/β-catenin axis in hepatocellular carcinoma

Cell Biol Toxicol. 2023 Aug;39(4):1735-1752. doi: 10.1007/s10565-022-09777-3. Epub 2022 Dec 28.

Abstract

Adriamycin is widely used as a chemotherapeutic strategy for advanced hepatocellular carcinoma (HCC). However, the clinical response was disappointing because of the acquired drug resistance with long-term usage. Revealing the underlying mechanism could provide promising therapeutics for the drug-resistant patients. The recently identified linc-ROR (long intergenic non-protein-coding RNA, regulator of reprogramming) has been found to be an oncogene in various cancers, and it also demonstrated to mediate drug resistance and metastasis. We thereby wonder whether this lincRNA could mediate adriamycin chemoresistance in HCC. In this study, linc-ROR was found to be upregulated in adriamycin-resistant HCC cells. And its overexpression accelerated epithelial-mesenchymal transition (EMT) program and adriamycin resistance. Conversely, its silence suppressed EMT and made HCC cells sensitize to adriamycin in vitro and in vivo. Further investigation revealed that linc-ROR physically interacted with AP-2α, mediated its stability by a post-translational modification manner, and sequentially activated Wnt/β-catenin pathway. Furthermore, linc-ROR expression was positively associated with β-catenin expression in human clinical specimens. Taken together, linc-ROR promoted tumorigenesis and adriamycin resistance in HCC via a linc-ROR/AP-2α/Wnt/β-catenin axis, which could be developed as a potential therapeutic target for the adriamycin-resistant patients.

Keywords: AP-2α; Adriamycin resistance; Hepatocellular carcinoma; Linc-ROR; Wnt/β-catenin pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / pathology
  • Doxorubicin / pharmacology
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / pathology
  • RNA, Long Noncoding / genetics
  • beta Catenin / genetics

Substances

  • beta Catenin
  • Doxorubicin
  • RNA, Long Noncoding