Background: Multiple sclerosis (MS) is recognized as the most prevalent autoimmune abnormality of the CNS. T1WI, T2WI, and FLAIR are limited in the quantification of tissue damage and detection of tissue alterations in white and grey matter in MS. This study aimed to the evaluation of changes in DTI indices in these patients at the thalamus and basal ganglia.
Methods: 30 relapsing-remitting MS (RRMS) cases and 30 normal individuals were included. Conventional MRI (T2, FLAIR) was acquired to confirm NAGM in MS patients. A T1 MPRAGE protocol was used to normalize DTI images. FSL, SPM, and Explore DTI software were employed to reach Mean Diffusivities (MD), Axial Diffusivities (AD), Fractional anisotropy (FA), and Radial Diffusivity (RD) at the thalamus and the basal ganglia.
Results: The FA and RD of the thalamus were decreased in healthy controls compared to MS cases (0.319 vs. 0.296 and 0.0009 vs. 0.0006, respectively) (P < 0.05). The AD value in the thalamus and the FA value in the caudate nucleus were significantly lower in MS cases than in controls (0.0009 vs. 0.0011 and 0.16 vs. 0.18, respectively) (P < 0.05). MD values in the thalamus or basal ganglia were not significantly different between groups.
Conclusions: DTI measures including FA, RD, and AD have a good diagnostic performance in detecting microstructural changes in the normal-appearing thalamus in cases with RRMS while they had no significant relationship with clinical signs in terms of EDSS.
Availability of data and material: Not applicable.
Keywords: AD, Axial Diffusivities; Basal ganglia; Diffusion Tensor Imaging; FA, Fractional anisotropy; MD, Mean Diffusivities; MS, Multiple sclerosis; Multiple sclerosis; RD, Radial Diffusivity; RRMS, relapsing-remitting MS; Thalamus.
© 2022 The Authors.