Pancreatic cancer is the most aggressive malignant tumor with difficulty in early diagnosis, very short survival time in advanced stage, and lack of effective treatment options. In this work, a novel combination chemotherapy strategy based on bioactive black phosphorus (BP) and gemcitabine (GEM) is developed for efficient treatment of pancreatic cancer. The combined cell cycle blockage in G2/M phase induced by BP and G0/G1 phase by GEM results in synergistic killing of pancreatic cancer cells with the combination index (CI) < 1. The iRGD modified zein nanoparticles co-loaded with BP quantum dots (BPQDs) and GEM are designed and prepared as a targeted nanoplatform (BP-GEM@NPs). After intravenous injection, the in vivo distribution and pharmacokinetics results demonstrate that BP-GEM@NPs shows excellent tumor targeting capability and significantly prolonged blood circulation time. The targeted co-delivery of BPQDs and GEM induces much more pancreatic tumor cell apoptosis and synergistically inhibits tumor growth in both subcutaneous xenograft and orthotopic models. Meanwhile, BP-GEM@NPs exhibit good biocompatibility without bring adverse effects. This work indicates the great potential of BP-GEM@NPs as a combination chemotherapy for pancreatic cancer and provides insights into development of biomedicine by exploring the intrinsic bioactivities of nanomaterials.
Keywords: Bioactivity; Black phosphorus; Cell cycle arrest; Combination chemotherapy; Pancreatic cancer.
Copyright © 2022. Published by Elsevier B.V.