We assessed the effect of a contact lens that filters short-wavelength (SW) visible light on color appearance. These effects were modeled and measured by direct comparison to a clear contact lens. Sixty-one subjects were enrolled, and 58 completed as cohort; 31 were 18 to 39 years old (mean ± SD, 29.6 ± 5.6), 27 were 40 to 65 years old (50.1 ± 8.1). A double-masked contralateral design was used; participants randomly wore a SW-filtering contact lens on one eye and a clear control lens on the other eye. Subjects then mixed three primaries (including a short-wave primary, strongly within the absorbance of the test lens) until a perceived perfect neutral white was achieved with each eye. Color appearance was quantified using chromaticity coordinates measured with a spectral radiometer within a custom-built tricolorimeter. Color vision in natural scenes was simulated using hyperspectral images and cone fundamentals based on a standard observer. Overall, the chromaticity coordinates of matches that were set using the SW-filtering contact lens (n = 58; x = 0.345, y = 0.325, u' = 0.222, v' = 0.470) and clear contact lens (n = 58; x = 0.344, y = 0.325, u' = 0.223, v' = 0.471) were not significantly different, regardless of age group. Simulations indicated that, for natural scenes, the SW-filtering contact lens that was evaluated changes L/(L+M) and S/(L+M) chromatic contrast by no more than -1.4% to +1.1% and -36.9% to +5.0%, respectively. Tricolorimetry was used to measure color appearance in subjects wearing a SW-filtering lens in one eye and a clear lens in the other, and the results indicate that imparting a subtle tint to a contact lens, as in the SW-filtering lens that was evaluated, does not alter color appearance for younger or older subjects. A model of color vision predicted little effect of the lens on chromatic contrast for natural scenes.