pH-responsive in situ gelling properties of thiolated citrus high-methoxyl pectin (TCHMP) were investigated in this study. The gelation capacity results revealed that the in situ gelation behavior of TCHMP only occurred when the pH value was higher than 6.25. The gel strength increased from 26.63 g to 42.77 g as the pH value increased from 7.4 to 8.9. Rheological measurements confirmed that the apparent viscosity and viscoelasticity of TCHMP were highly dependent on pH value and dialysis time. Compared with the control group, the apparent viscosity of TCHMP dialyzed in phosphate-buffered saline (PBS) of pH 8.9 for 180 min increased 695-fold. During the dialysis process of TCHMP at different pH values (7.4-8.9), the final thiol groups content decreased and the final disulfide bonds content increased with the increase in pH value. This illustrates that the mechanism of in situ gelation is mainly the oxidation of thiol-thiol groups to form disulfide bonds. These results can put forward new insights into the pH-responsive in situ gelling properties of TCHMP and provide a theoretical basis for the application of TCHMP in neutral and alkaline gel systems.
Keywords: Gelation capacity; In situ gelling; Pectin; Rheological property; Thiolated; pH-responsive.
Copyright © 2022 Elsevier Ltd. All rights reserved.