Blackberry is an economically important shrub species of Rubus in the Rosaceae family. It is rich in phenolic compounds, which have many health effects and pharmaceutical value. The utilization of metabolites from various blackberry tissues is still in the primary stage of development, so investigating the metabolites in various tissues is of practical significance. In this study, nontargeted LC - MS metabolomics was used to identify and measure metabolites in the roots, stems, leaves and fruits (green, red, and black fruits) of blackberry "Chester". We found that 1,427 and 874 metabolites were annotated in the positive and negative ion modes (POS; NEG), respectively. Differentially abundant metabolites (DAMs) between the leaf and root groups were the most abundant (POS: 249; NEG: 141), and the DAMs between the green and red fruit groups were the least abundant (POS: 21; NEG: 14). Moreover, the DAMs in different fruit development stages were far less than those in different tissues. There were significant differences in flavonoid biosynthesis-related pathways among the comparison groups. Trend analysis showed that the profile 10 had the largest number of metabolites. This study provides a scientific basis for the classification and efficient utilization of resources in various tissues of blackberry plants and the directional development of blackberry products.
Keywords: Blackberry; Differentially abundant metabolites; Flavonoid synthesis; KEGG pathway analysis; Various tissues.
Copyright © 2022 Elsevier Ltd. All rights reserved.