We report rich magnetic behavior for Co-Ir based double perovskites consisting of different rare earth cations Pr and Nd: Pr2CoIrO6(PCIO) and Nd2CoIrO6(NCIO). Both oxides show an antisite disorder of 10% and a ferrimagnetic transition,TFiMaround 96 K and 98 K respectively. The long range magnetic ordering is arising from the canted antiferromagnetic ordering between the Co2+and Ir4+ions. A prominent peak around 27 K in magnetization data of NCIO indicates that the total moment of Nd ion is antiferromagnetically coupled to the Co-Ir sublattice. The long range order of the Nd sublattice is corroborated by the evidence of an anomaly in specific heat at very low temperature. The compounds exhibit a maximum change of magnetic entropy of 0.57 (0.48) J kg.K-1atTFiMin a magnetic field of 5 T. The strong spin-orbit coupling in 5dstates of Ir and cation disorder lead to the Mott insulating phase as found from the analysis of temperature dependent resistivity. These unique behaviors suggest an interesting interplay between localized Pr/Nd-4f, itinerant Co-3dand Ir-5delectrons.
Keywords: EXAFS; double perovskite; iridates; magnetism; specific heat; structure.
© 2023 IOP Publishing Ltd.