Species from the flowering plant genus Cyclamen are popular amongst consumers. In particular Cyclamen persicum Mill. has been significantly used commercially, and certain small flowering species such as Cyclamen hederifolium and Cyclamen coum are gradually growing in popularity in the potted flower market. Here, the chloroplast genomes of nine Cyclamen samples including four Cyclamen species and five varieties of C. hederifolium were sequenced for genome structure comparison, White green septal striped leaves related gene screening and DNA molecular markers were developed for phylogenetic analysis. In comparing Cyclamen species' chloroplast genomes, gene content and gene order were found to be highly similar with the length of genomes ranging from 151,626 to 153,058 bp. The chloroplast genome of Cyclamen has 128 genes, including 84 protein-coding genes, 36 transfer RNA genes, and 8 ribosomal RNA genes. Based on intraspecific variation, seven hotspots, including three genes and four intergenic regions, were identified as variable markers for downstream species delimitation and interspecific relationship analyses. Moreover, a phylogenetic tree constructed with complete chloroplast genomes, revealed that Cyclamen are monophyletic with Lysimachia as the closest neighbor. Phylogenetic analyses of the 14 Cyclamen species with the seven variable regions showed five distinct clades within this genus. The highly supported topologies showed these seven regions may be used as candidate DNA barcode sequences to distinguish Cyclamen species. White green septal striped leaves is common in C. hederifolium, however the molecular mechanism of this has not yet been described. Here, we find that the intergenic region rps4-trnT-UGU seems related to white green septal striped leaves.
© 2023. The Author(s).