Complexes featuring lanthanide-ligand multiple bonds are rare and highly reactive. They are important synthetic targets to understand 4f/5d-bonding in comparison to d-block and actinide congeners. Herein, the isolation and characterization of a bridging cerium(IV)-nitride complex: [(TriNOx)Ce(Li2μ-N)Ce(TriNOx)][BArF4] is reported, the first example of a molecular cerium-nitride. The compound was isolated by deprotonating a monometallic cerium(IV)-ammonia complex: [CeIV(NH3)(TriNOx)][BArF4]. The average Ce═N bond length of [(TriNOx)Ce(Li2μ-N)Ce(TriNOx)][BArF4] was 2.117(3) Å. Vibrational studies of the 15N-isotopomer exhibited a shift of the Ce═N═Ce asymmetric stretch from ν = 644 cm-1 to 640 cm-1, and X-ray spectroscopic studies confirm the +4 oxidation state of cerium. Computational analyses showed strong involvement of the cerium 4f shell in bonding with overall 16% and 11% cerium weight in the σ- and π-bonds of the Ce═N═Ce fragment, respectively.