Objective: NIPA1 mutations have been implicated in hereditary spastic paraplegia (HSP) as the cause of spastic paraplegia type 6 (SPG6). The aim of this study was to investigate the clinical and genetic features of SPG6 in a Taiwanese HSP cohort.
Methods: We screened 242 unrelated Taiwanese patients with HSP for NIPA1 mutations. The clinical features of patients with a NIPA1 mutation were analyzed. Minigene-based splicing assay, RT-PCR analysis on the patients' RNA, and cell-based protein expression study were utilized to assess the effects of the mutations on splicing and protein expression.
Results: Two patients were identified to carry a different heterozygous NIPA1 mutation. The two mutations, c.316G>A and c.316G>C, are located in the 3' end of NIPA1 exon 3 near the exon-intron boundary and putatively lead to the same amino acid substitution, p.G106R. The patient harboring NIPA1 c.316G>A manifested spastic paraplegia, epilepsy and schizophrenia since age 17 years, whereas the individual carrying NIPA1 c.316G>C had pure HSP since age 12 years. We reviewed literature and found that epilepsy was present in multiple individuals with NIPA1 c.316G>A but none with NIPA1 c.316G>C. Functional studies demonstrated that both mutations did not affect splicing, but only the c.316G>A mutation was associated with a significantly reduced NIPA1 protein expression.
Interpretation: SPG6 accounted for 0.8% of HSP cases in the Taiwanese cohort. The NIPA1 c.316G>A and c.316G>C mutations are associated with adolescent-onset complex and pure form HSP, respectively. The different effects on protein expression of the two mutations may be associated with their phenotypic discrepancy.
© 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.