Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion

Phys Rev Lett. 2022 Dec 16;129(25):250501. doi: 10.1103/PhysRevLett.129.250501.

Abstract

Triply degenerate points (TDPs), which correspond to new types of topological semimetals, can support novel quasiparticles possessing effective integer spins while preserving Fermi statistics. Here by mapping the momentum space to the parameter space of a three-level system in a trapped ion, we experimentally explore the transitions between different types of TDPs driven by spin-tensor-momentum couplings. We observe the phase transitions between TDPs with different topological charges by measuring the Berry flux on a loop surrounding the gap-closing lines, and the jump of the Berry flux gives the jump of the topological charge (up to a 2π factor) across the transitions. For the Berry flux measurement, we employ a new method by examining the geometric rotations of both spin vectors and tensors, which lead to a generalized solid angle equal to the Berry flux. The controllability of a multilevel ion offers a versatile platform to study high-spin physics, and our Letter paves the way to explore novel topological phenomena therein.