Schizotypal traits can be conceptualized as a phenotype for schizophrenia spectrum disorders. As such, a better understanding of schizotypal traits could potentially improve early identification and treatment of schizophrenia. We used connectome-based predictive modelling (CPM) based on whole-brain resting-state functional connectivity to predict schizotypal traits in 82 healthy participants. Results showed that only the negative network could reliably predict an individual's schizotypal traits (r = 0.29). The 10 nodes with the highest edges in the negative network were those known to play a key role in sensation and perception, cognitive control as well as motor control. Our findings suggest that CPM might be a promising approach to improve early identification and prevention of schizophrenia from a spectrum perspective.
Keywords: Connectome-based predictive modelling (CPM); Machine learning; Resting-state functional connectivity; Schizotypal trait.
Copyright © 2023 Elsevier B.V. All rights reserved.