Environmental exposures including toxins and nutrition may hamper the developing brain in utero, limiting the brain's reserve capacity and increasing the risk for Alzheimer's disease (AD). The purpose of this systematic review is to summarize all currently available evidence for the association between prenatal exposures and AD-related volumetric brain biomarkers. We systematically searched MEDLINE and Embase for studies in humans reporting on associations between prenatal exposure(s) and AD-related volumetric brain biomarkers, including whole brain volume (WBV), hippocampal volume (HV) and/or temporal lobe volume (TLV) measured with structural magnetic resonance imaging (PROSPERO; CRD42020169317). Risk of bias was assessed using the Newcastle Ottawa Scale. We identified 79 eligible studies (search date: August 30th, 2020; Ntotal=24,784; median age 10.7 years) reporting on WBV (N = 38), HV (N = 63) and/or TLV (N = 5) in exposure categories alcohol (N = 30), smoking (N = 7), illicit drugs (N = 14), mental health problems (N = 7), diet (N = 8), disease, treatment and physiology (N = 10), infections (N = 6) and environmental exposures (N = 3). Overall risk of bias was low. Prenatal exposure to alcohol, opioids, cocaine, nutrient shortage, placental dysfunction and maternal anemia was associated with smaller brain volumes. We conclude that the prenatal environment is important in shaping the risk for late-life neurodegenerative disease.
Keywords: Alzheimer’s disease; Brain reserve; Developmental programming; MRI; Systematic review.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.