Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology

Int J Biol Macromol. 2023 Mar 1:230:123131. doi: 10.1016/j.ijbiomac.2022.123131. Epub 2023 Jan 5.

Abstract

3-D Bioprinting is employed as a novel approach in biofabrication to promote skin regeneration following chronic-wounds and injury. A novel bioink composed of carbohydrazide crosslinked {polyethylene oxide-co- Chitosan-co- poly(methylmethacrylic-acid)} (PEO-CS-PMMA) laden with Nicotinamide and human dermal fibroblast was successfully synthesized via Free radical-copolymerization at 73 °C. The developed bioink was characterized in term of swelling, structural-confirmation by solid state 13C-Nuclear Magnetic Resonance (NMR), morphology, thermal, 3-D Bioprinting via extrusion, rheological and interaction with DNA respectively. The predominant rate of gelation was attributed to the electrostatic interactions between cationic CS and anionic PMMA pendant groups. The morphology of developed bioink presented a porous architecture satisfying the cell and growth-factor viability across the barrier. The thermal analysis revealed two-step degradation with 85 % weight loss in term of decomposition and molecular changes in the bioink moieties By applying low pressure in the range of 25-50 kPa, the optimum reproducibility and printability were determined at 37 °C in the viscosity range of 500-550 Pa. s. A higher survival rate of 92 % was observed for (PEO-CS-PMMA) in comparison to 67 % for pure chitosan built bioink. A binding constant of K ≈ 1.8 × 106 M-1 recognized a thermodynamically stable interaction of (PEO-CS-PMMA) with the Salmon-DNA. Further, the addition of PEO (5.0 %) was addressed with better self-healing and printability to produce skin-tissue constructs to replace the infected skin in human.

Keywords: 3-D bioprinting; Bioink; Bioink-DNA interaction; Human-dermal fibroblast; Nicotinamide; Rheology; Skin-tissue.

MeSH terms

  • Bioprinting*
  • Chitosan*
  • Humans
  • Hydrogels / chemistry
  • Polymethyl Methacrylate
  • Printing, Three-Dimensional
  • Reproducibility of Results
  • Technology
  • Tissue Engineering
  • Tissue Scaffolds / chemistry

Substances

  • Hydrogels
  • Chitosan
  • Polymethyl Methacrylate