Rapid Fabrication of Fe and Pd Thin Films as SERS-Active Substrates via Dynamic Hydrogen Bubble Template Method

Nanomaterials (Basel). 2022 Dec 27;13(1):135. doi: 10.3390/nano13010135.

Abstract

Fe and Pd thin film samples have been fabricated in a rapid fashion utilizing the versatile technique of dynamic hydrogen bubble template (DHBT) method via potentiostatic electrodeposition over a copper substrate. The morphology of the samples is dendritic, with the composition being directly proportional to the deposition time. All the samples have been tested as SERS substrates for the detection of Rhodamine 6G (R6G) dye. The samples perform very well, with the best performance shown by the Pd samples. The lowest detectable R6G concentration was found to be 10-6 M (479 μgL-1) by one of the Pd samples with the deposition time of 180 s. The highest enhancement of signals noticed in this sample can be attributed to its morphology, which is more nanostructured compared to other samples, which is extremely conducive to the phenomenon of localized surface plasmon resonance (LSPR). Overall, these samples are cheaper, easy to prepare with a rapid fabrication method, and show appreciable SERS performance.

Keywords: DHBT; Fe; Pd; SERS; thin films.